

PROPUESTAS DE TRABAJOS FIN DE ESTUDIOS Curso 2025-2026

Director/es	Raquel Lacuesta Gilaberte
Título	Desarrollo de un scape room para el Robot Sanbot Elf destinada
	a colegios y aprendizaje
Breve Descripción	El desarrollo se realizará en Android . Se desarrollarán un scape
	room para coles donde el Robot Sanbot Elf actuará de
	moderador. Se trabajará con el acceso a los sensores del robot
	para configurar la actividad
Grado (si aplica)	
Nº Alumnos	1

Director/es	Raquel Lacuesta Gilaberte
Título	Desarrollo de una aplicación para las gafas 3D Oculus Quest
	controlada por actividad cerebral (usando un dispositivo EGG
	Muse SmartBand 2)
Breve Descripción	Desarrollo de un entorno virtual para las gafas 3D Oculus Quest
	donde se evalue la entrada del estado del usuario para adaptar
	el juego/tarea a la actividad de la SmartBand
Grado (si aplica)	
Nº Alumnos	1

Director/es	Raquel Lacuesta Gilaberte
Título	Desarrollo de una aplicación informativa para nuevos alumnos
	de la EUPT usando el robot TEMI/Sanbot Elf como mediador
Breve Descripción	Desarrollo de una aplicación en Android para el desarrollo de un
	presentador para la EUPT.
Grado (si aplica)	
Nº Alumnos	1

Director/es	Raquel Lacuesta Gilaberte
Título	Diseño de un robot de gestión ambiental.
Breve Descripción	A través de una placa de sensorización, un módulo de
	movimiento y sistemas conversacionales tipo Alexa se diseñará
	un robot de control ambiental
Grado (si aplica)	
Nº Alumnos	1

Director/es	Raquel Lacuesta Gilaberte
Título	Diseño de una aplicación de gestión del estres
Breve Descripción	Diseño de un chatbot basado en Whatsapp con retroalimentación basada en datos fisiológicos
Grado (si aplica)	
Nº Alumnos	1

Director/es	Jesús Lázaro Plaza, Carlos Sánchez Tapia
Título	Estimación de la posición de un brazalete wearable mediante
	acelerometría
Breve Descripción	La posición de un dispositivo wearable es relevante en muchas
	aplicaciones. Por ejemplo, nos permite saber en qué posición
	duerme un sujeto, lo cuál es de importancia en la monitorización
	de algunas patologías del sueño.
	En este TFG se estudiarán métodos de procesado de señal para
	estimar la posición de un dispositivo wearable mediante
	acelerometría, y serán validados con la ayuda de un brazo
	robótico, que será programado para colocar el wearable en
	diferentes posiciones de forma precisa.
Grado (si aplica)	Ingeniería Electrónica y Automática
Nº Alumnos	1

Director/es	Jesús Lázaro Plaza
Título	Monitorización del síndrome de apnea-hipopnea del sueño
	mediante un brazalete wearable
Breve Descripción	El síndrome de apnea-hipopnea del sueño (SAHS) consiste en
	periodos repetitivos de cese o reducción considerable del flujo
	respiratorio durante el sueño. El resultado es una muy mala
	calidad del sueño que tiene implicaciones graves para la salud y
	el bienestar de quien lo padece, por lo que es importante
	detectarlo y tratarlo. Sin embargo, su diagnóstico se basa en una
	polisomnografía, que requiere pasar una noche en un hospital
	bajo vigilancia de expertos. Este proceso demanda muchos
	recursos, provocando una situación de infradiagnóstico muy
	elevado del SAHS. Por ello, resulta interesante investigar en
	métodos de cribado más sencillos que permitan llegar a mayor
	población, por ejemplo, basados en dispositivos wearable.
	En este TFG se aplicarán métodos de procesado de señal con el
	objetivo de hacer un cribado del SAHS mediante un brazalete
	wearable capaz de medir electrocardiograma de forma continua.
Grado (si aplica)	
Nº Alumnos	1

Director/es	Ana María López
Título	Sistema automático de evaluación de imperfecciones en
	fabricación de piezas pequeñas
Breve Descripción	Utilizando técnicas de Inteligencia Artificial aplicadas al análisis
	de vídeo se detectarán piezas defectuosas a medida que se
	trasladan por una cinta transportadora controlada por una
	tarjeta de bajo coste (raspberry-Pi/arduino). Se valorará
	conocimientos de programación en Python y haber cursado la
	optativa de Visión por Computador, aunque no es requisito

	indispensable
Grado (si aplica)	Ingeniería Electrónica y Automática
Nº Alumnos	1

Director/es	Ana María López
Título	Sistema de caraterización de burbujas de gas presente en un
	líquido
Breve Descripción	Utilizando técnicas de Inteligencia Artificial aplicadas al análisis
	de vídeo se desea detectar la presencia de burbujas de un gas en
	un líquido, estimando su tamaño y velocidad. Se valorará
	conocimientos de programación en Python y haber cursado la
	optativa de Visión por Computador, aunque no es requisito
	indispensable. Este trabajo se enmarca en un proyecto de
	investigación cuyo objetivo es medir el proceso de disolución de
	CO2 en un líquido y minimizar su emisión en la atmósfera. Existe
	la posibilidad de solictar una beca para la realización de este TFG
Grado (si aplica)	Ingeniería Electrónica y Automática
Nº Alumnos	1

Director/es	Ana María López/Virginia Palero Díaz
Título	Obtención mediante herramientas de Inteligencia Artificial de un
	modelo para la identificación y caracterización de microplásticos.
Breve Descripción	La proliferación de microplásticos, en particular microfibras, en el
	agua representa un importante problema medioambiental y de
	salud pública, debido a su persistencia y a sus posibles riesgos
	para la salud.
	El objetivo de esta propuesta de TFG es llevar a cabo su
	identificación usando herramientas de Inteligencia Artificial. En
	primer lugar, se deberá realizar una revisión bibliográfica
	actualizada sobre las aplicaciones de IA para identificar

	microestructuras. A continuación se llevará a cabo el registro de
	imágenes de fibras suspendidas en agua con el objetivo de crear
	una base datos a partir de la cual entrenar el modelo matemático
	que permita identificar y localizar la presencia de estos elementos
	contaminantes. Este modelo se aplicará al análisis en tiempo real
	de imágenes similares con el objetivo de estudiar la evolución
	temporal del tamaño y forma de estos microplásticos. Existe la
	posibilidad de solictar una beca para la realización de este TFG
Grado (si aplica)	Ingeniería Electrónica y Automática
Nº Alumnos	1

Director/es	Carlos Marín Lora
Título	Generación automática de rutas de entrenamiento en función de
	restricciones personalizadas
Breve Descripción	Diseño e implementación de un sistema que utilice datos
	geoespaciales (p. ej. OpenStreetMap) para generar rutas locales
	adaptadas a parámetros como distancia, desnivel acumulado,
	tramos ascendentes o puntos de inicio/fin. Incluye el desarrollo
	de algoritmos de optimización y una interfaz gráfica para
	explorar y comparar las rutas sugeridas.
Grado (si aplica)	Ingeniería Informática
Nº Alumnos	1

Director/es	Carlos Marín Lora
Título	Videojuego educativo STEM basado en simulaciones multiagente
Breve Descripción	Diseño e implementación de un videojuego para dispositivos
	móviles que utilice un sistema multiagente para simular
	fenómenos STEM (por ejemplo, dinámica de fluidos, ecosistemas
	o propagación de señales en redes). El objetivo es crear
	mecánicas de juego que permitan al jugador experimentar,

	manipular variables y observar el comportamiento emergente de
	los agentes para facilitar el aprendizaje interactivo. Incluye el
	desarrollo del motor multiagente, la integración en un entorno
	jugable y la evaluación pedagógica básica.
Grado (si aplica)	
Nº Alumnos	

Director/es	Carlos Marín Lora
Título	Videojuego de realidad aumentada con sistema multiagente
	para la exploración de conceptos STEM en el entorno físico
Breve Descripción	Desarrollo de un videojuego móvil que combine realidad
	aumentada y un sistema multiagente compartido con el TFG A. El
	jugador explora su entorno real para descubrir simulaciones y
	retos STEM superpuestos mediante AR. Incluye integración de
	posicionamiento geográfico, reconocimiento de superficies,
	visualización 3D y pruebas de jugabilidad para evaluar la
	experiencia educativa.
Grado (si aplica)	Ingeniería Informática
Nº Alumnos	1

Director/es	Carlos Medrano
	Inmaculada Plaza
Título	Diseño de sistema de detección de paso para residencias y
	centros de día.
Breve Descripción	En el proyecto se desarrollará un detector de paso para controlar
	la salida de personas no autorizadas por una puerta.
	El sistema debe ser económico y capaz de funcionar con baterías.
	Se trabajará en coordinación con una Fundación para su uso con
	personas mayores en Residencias y Centros de Día.
	La persona encargada del proyecto deberá realizar una propuesta

	de diseño, seleccionar los componentes y desarrollar un prototipo
	funcional, de acuerdo a los requisitos establecidos por la
	Fundación.
Grado (si aplica)	Ingeniería Electrónica y Automática
Nº Alumnos	1

Director/es	Adrián Navas Montilla
Título	Simulación numérica de flujos de interés ambiental, industrial o
	aeronáutico
Breve Descripción	En este TFG se utilizará un código de simulación desarrollado en
	la EUPT, Caelum (https://github.com/navasmontilla/CAELUM),
	para resolver problemas de interés ambiental, industrial o
	aeronáutico (a definir según intereses del estudiante). Caelum es
	un software open-source desarrollado en C y Python para
	simulaciones de mecánica de fluidos computacional. Con este
	TFG podrás aprender y aplicar técnicas de computación científica
	y contribuir a un proyecto real de código abierto. Los objetivos
	concretos del trabajo y la temática de aplicación se acordarán
	con el estudiante según sus intereses.
	Recomendable: conocimientos básicos de Python y C, así como
	interés por la programación.
Grado (si aplica)	Ingeniería Electrónica y Automática, Ingeniería Informática
Nº Alumnos	1

Director/es	Carlos Sánchez Tapia
Título	Diseño de un escenario y programación de una tarea de escritura
	con el Robot industrial IRB1100 de ABB
Breve Descripción	Se pretende configurar el entorno de trabajo del robot IRB1100
	de ABB, incluyendo los objetos a manipular. Mediante
	programación de trayectorias se realizarán tareas de escritura de

	palabras, tratando de optimizar el proceso y valorando las
	limitaciones físicas y de funcionamiento del robot.
Grado (si aplica)	Ingeniería Electrónica y Automática
Nº Alumnos	1

Director/es	Carlos Sánchez Tapia
Título	Implementación de tareas de agarre y movimiento de objetos
	con el Robot Industrial IRB1100 de ABB: de la simulación al
	laboratorio
Breve Descripción	Se pretende programar un robot industrial para que agarre un
	objeto y lo mueva con orientación prefijada entre diferentes
	puntos predefinidos en una mesa. Se configurará y calibrará el
	escenario, tanto de RobotStudio como del laboratorio para
	asegurar la precisión de las tareas del robot. El objetivo final será
	diseñar un documento que sirva como práctica de laboratorio a
	incluir en el programa de la asignatura de Robótica Industrial.
Grado (si aplica)	Ingeniería Electrónica y Automática
Nº Alumnos	1

Director/es	Carlos Sánchez Tapia
Título	Modelado y Simulación de Eventos Discretos en un Robot
	Industrial utilizando OpenModelica. Diseño práctico de
	Simulación de Sistemas Dinámicos
Breve Descripción	Se pretende desarrollar un modelo en OpenModelica que simule
	el comportamiento de un brazo robótico industrial en una línea
	de ensamblaje. Además se analizará el impacto de determinados
	eventos discretos en el rendimiento del sistema buscando
	optimizar el tiempo de ciclo y la eficiencia del proceso de
	producción.
	Recomendable haber cursado la asignatura de Simulación de

	Sistemas Dinámicos.
Grado (si aplica)	Ingeniería Electrónica y Automática
Nº Alumnos	1

Director/es	Carlos Sánchez Tapia
Título	Estudio Comparativo de Estrategias Pull en Sistemas de
	Fabricación Multi-Producto mediante Simulación de Eventos
	Discretos con JaamSim
Breve Descripción	Se pretende modelar un sistema de fabricación multi-producto
	en JaamSim, considerando diferentes configuraciones y
	parámetros de producción. Para ello se implementarán y
	compararán diversas estrategias pull, como el método Kanban, la
	producción Just-In-Time y la programación basada en
	prioridades, evaluando el rendimiento de cada una de ellas.
	Recomendable haber cursado la asignatura de Simulación de
	Sistemas Dinámicos.
Grado (si aplica)	Ingeniería Electrónica y Automática
Nº Alumnos	1

Director/es	Raúl Igual Catalán / Sergio Domínguez Gimeno
Título	Aplicación de técnicas de inteligencia artificial para mejorar la
	precisión en un sistema de medida de la estabilidad humana
Breve Descripción	Este Trabajo Fin de Grado se basa en la aplicación de diferentes
	técnicas de inteligencia artifical que permitan mejorar la
	precisión en la medición de la presión en un sistema electrónico
	destinado a evaluar la estabilidad humana. Los directores
	indicarán diversas técnicas, basadas fundamentalmente en redes
	neurales, que potencialmente podrían utilizarse para resolver
	este problema. El estudiante tendrá que aplicar las técnicas
	indicadas, evaluar sus resultados y concluir qué técnicas serían

	las óptimas.
Grado (si aplica)	Ingeniería Electrónica y Automática / Ingeniería Informática
Nº Alumnos	1